

    
      
          
            
  
pybloomfiltermmap3: a fast implementation of Bloom filter for Python

pybloomfiltermmap3 is a Python 3  fork of pybloomfiltermmap by Michael Axiak (@axiak) [https://github.com/axiak].

Bloom filter is a probabilistic data structure used to test whether an element is a member of a set.
The wikipedia page [http://en.wikipedia.org/wiki/Bloom_filter] has further information on their nature.

This module implements a Bloom filter in Python that’s fast
and uses mmap files for better scalability.

Here’s a quick example:

>>> from pybloomfilter import BloomFilter

>>> bf = BloomFilter(10000000, 0.01, 'filter.bloom')
>>> with open("/usr/share/dict/words") as f:
>>>     for word in f:
>>>         bf.add(word.rstrip())

>>> print 'apple' in bf
True





That wasn’t so hard, was it? Now, there are a lot of other things we can do.
For instance, let’s say we want to create a similar filter with just a few pieces of fruit:

>>> fruitbf = bf.copy_template("fruit.bloom")
>>> fruitbf.update(("apple", "banana", "orange", "pear"))

>>> print(fruitbf.to_base64())
"eJzt2k13ojAUBuA9f8WFyofF5TWChlTHaPzqrlqFCtj6gQi/frqZM2N7aq3Gis59d2ye85KTRbhk"
"0lyu1NRmsQrgRda0I+wZCfXIaxuWv+jqDxA8vdaf21HIOSn1u6LRE0VL9Z/qghfbBmxZoHsqM3k8"
"N5XyPAxH2p22TJJoqwU9Q0y0dNDYrOHBIa3BwuznapG+KZZq69JUG0zu1tqI5weJKdpGq7PNJ6tB"
"GKmzcGWWy8o0FeNNYNZAQpSdJwajt7eRhJ2YM2NOkTnSsBOCGGKIIYbY2TA663GgWWyWfUwn3oIc"
"fyLYxeQwiF07RqBg9NgHrG5ba3jba5yl4zS2LtEMMcQQQwwxmRiBhPGOJOywIPafYhUwqnTvZOfY"
"Zu40HH/YxDexZojJwsx6ObDcT7D8vVOtJBxiAhD/AjMmjeF2Wnqd+5RrHdo4azPEzoANabiUhh0b"
"xBBDDDHEENsf8twlrizswEjDhnTbzWazbGKpQ5k07E9Ox2iFvXBZ2D9B7DawyqLFu5lshhhiiGUK"
"a4nUloa9yxkwR7XhgPPXYdhRIa77uDtnyvqaIXalGK02ufv3J36GmsnG4lquPnN9gJo1VNxqgYbt"
"ji/EC8s1PWG5fuVizW4Jox6/3o9XxBBDDLFbwcg9v/AwjrPHtTRsX34O01mxLw37bhCTjJk0+PLK"
"08HYd4MYYojdKmYnBfjsktEpySY2tGGZzWaIIfYDGB271Yaieaat/AaOkNKb"






Why pybloomfilter?

As already mentioned, there are a couple reasons to use this module:


	It natively uses mmaped files [http://en.wikipedia.org/wiki/Mmap].


	It natively does the set things you want a Bloom filter to do.


	It is fast (see benchmarks [http://axiak.github.io/pybloomfiltermmap/#benchmarks]).






Install

Please note that this version is for Python 3.5 and over.
In case you are using Python 2, please see pybloomfiltermmap [https://github.com/axiak/pybloomfiltermmap].

To build and install:

$ pip install pybloomfiltermmap3







Develop

To develop you will need Cython. The setup.py script should automatically
build from Cython source if the Cython module is available.


Class Reference


	BloomFilter Class Reference
	Class Methods

	Instance Attributes

	Instance Methods

	Magic Methods

	Exceptions
















          

      

      

    

  

    
      
          
            
  
BloomFilter Class Reference


	
class pybloomfilter.BloomFilter(capacity: int, error_rate: float[, filename = None: string][, perm=0755][, hash_seeds = None: list])

	Creates a new BloomFilter object with a given capacity and error_rate.


	Parameters

	
	capacity (int) – the maximum number of elements this filter
can contain while keeping the false positive rate under error_rate.


	error_rate (float) – false positive probability that will hold
given that capacity is not exceeded. Must be between 0-1.


	filename (str) – filename to use to create the new Bloom filter.
If a filename is not provided, an in-memory Bloom filter will be created.


	perm (int) – (not applicable for an in-memory Bloom filter)
file access permission flags.


	hash_seeds (list) – optionally specify hash seeds to use for the
hashing algorithm. Each hash seed must not exceed 32 bits. The number
of hash seeds will determine the number of hashes performed.








Note that we do not check capacity. This is important, because
we want to be able to support logical OR and AND (see BloomFilter.union()
and BloomFilter.intersection()). The capacity and error_rate then together
serve as a contract – you add less than capacity items, and the Bloom filter
will have an error rate less than error_rate.

Raises OSError if the supplied filename does not exist or if user
lacks permission to access such file. Raises ValueError if the supplied
error_rate is invalid, hash_seeds does not contain valid hash seeds, or
if the file cannot be read.






Class Methods


	
classmethod BloomFilter.open(filename[, mode="rw"])

	Creates a BloomFilter object from an existing file.


	Parameters

	
	filename (str) – existing filename


	mode (str) – file access mode






	Return type

	BloomFilter










	
classmethod BloomFilter.from_base64(filename, string[, perm=0755])

	Unpacks the supplied base64 string (as returned by BloomFilter.to_base64())
into the supplied filename and return a BloomFilter object using that
file.

Example:

>>> bf = BloomFilter.from_base64("/tmp/mike.bf",
    "eJwFwcuWgiAAANC9v+JCx7By0QKt0GHEbKSknflAQ9QmTyRfP/fW5E9XTRSX"
    "qcLlqGNXphAqcfVH\nRoNv0n4JlTpIvAP0e1+RyXX6I637ggA+VPZnTYR1A4"
    "Um5s9geYaZZLiT208JIiG3iwhf3Fwlzb3Y\n5NRL4uNQS6/d9OvTDJbnZMnR"
    "zcrplOX5kmsVIkQziM+vw4hCDQ3OkN9m3WVfPWzGfaTeRftMCLws\nPnzEzs"
    "gjAW60xZTBbj/bOAgYbK50PqjdzvgHZ6FHZw==\n")
>>> "MIKE" in bf
True






	Parameters

	
	filename (str) – new filename


	perm (int) – file access permission flags






	Return type

	BloomFilter











Instance Attributes


	
BloomFilter.capacity -> int

	The maximum number of elements this filter can contain while keeping
the false positive rate under BloomFilter.error_rate. Returns an integer.






	
BloomFilter.error_rate -> float

	The acceptable probability of false positives. Returns a float.






	
BloomFilter.bit_array -> int

	Bit vector representation of the Bloom filter contents. Returns an integer.






	
BloomFilter.hash_seeds -> list

	Integer seeds used for the random hashing. Returns a list of integers.






	
BloomFilter.filename -> string

	File name (compatible with file objects). Does not apply to an in-memory
BloomFilter and will raise ValueError if accessed.
Returns a string.






	
BloomFilter.num_bits -> int

	Number of bits used in the filter as buckets. Returns an integer.






	
BloomFilter.num_hashes -> int

	Number of hash functions used when computing. Returns an integer.






	
BloomFilter.read_only -> bool

	Indicates if the opened BloomFilter is read-only.
Always False for an in-memory BloomFilter.






	
BloomFilter.name -> bytes

	PENDING DEPRECATION: use BloomFilter.filename() instead.

File name (compatible with file objects). Does not apply to an in-memory
BloomFilter and will raise ValueError if accessed.
Returns an encoded string.







Instance Methods


	
BloomFilter.add(item)

	Adds an item to the Bloom filter.
Returns a boolean indicating whether this item was present
in the Bloom filter prior to adding (see BloomFilter.__contains__()).


	Parameters

	item – hashable object



	Return type

	bool










	
Bloomilter.clear_all()

	Removes all elements from the Bloom filter at once.






	
BloomFilter.copy(filename)

	Copies the current BloomFilter object to another object
with a new filename.


	Parameters

	filename (str) – new filename



	Return type

	BloomFilter










	
BloomFilter.copy_template(filename[, perm=0755])

	Creates a new BloomFilter object with the exact same parameters.
Once this is performed, the two filters are comparable, so
you can perform set operations using logical operators.

Example:

>>> apple = BloomFilter(100, 0.1, '/tmp/apple')
>>> apple.add('granny_smith')
False
>>> pear = apple.copy_template('/tmp/pear')
>>> pear.add('conference')
False
>>> pear |= apple






	Parameters

	
	filename (str) – new filename


	perm (int) – file access permission flags






	Return type

	BloomFilter










	
BloomFilter.sync()

	Forces a sync() call on the underlying mmap file object. Use this if
you are about to copy the file and you want to be sure you got
everything correctly.






	
BloomFilter.to_base64()

	Serializes the BloomFilter instance. Returns a compressed, base64 encoded string.
This string can later be unpacked into a BloomFilter using BloomFilter.from_base64().

This may also be used to compare filter contents, given that the same error_rate,
capacity and hash_seeds were used when constructing such filters. For example:

>>> b64_repr = "eJwFwUsOgjAUAMADuZCgKBsXhQeIWKRaEuquFihGPoYqDzm9M1U6LmUdU8UwUcNshM2IRssAwWfgSxjHjO6ssssn6bLsYTesqrtj0/dgYSuqzZ1cwISL1YrcH9V9PQ3cdN/JuRqn6nkRynUtd8rpmkldMt7Kb5EfF5d/IEl1GP/8LUuEYHN0HR5ihXL/1u65WKKZQkFsDykPfhQCpEAGGqexd4MX+vgkJ0/LCHIRNXpL0rk8SXH4A2pERcg="
>>> hash_seeds = [3837895095, 3446164276, 218928576, 318812276, 2715048734, 4231234832, 2646234356, 1058991177, 1248068903, 1134013883, 3269341494, 3044656612, 3079736504]

>>> bf = BloomFilter.from_base64("/tmp/bf", b64_repr)

>>> bf_rec = BloomFilter(bf.capacity, bf.error_rate, "/tmp/bf_rec", hash_seeds=bf.hash_seeds.tolist())
>>> bf_rec.add("5f35c4edcdb5b970ac8939a3c7abb3347ed9c4e3e251cbc799bdaeba008ce7aa")
>>> bf_rec.add("f416d946d98166066611fb1a5e262c5f241d9bfdd8c885e062433b6f6b73799a")

>>> assert bf_rec.to_base64() == bf.to_base64()






	Return type

	base64 encoded string representing filter










	
BloomFilter.update(iterable)

	Calls BloomFilter.add() on all items in the iterable.






	
BloomFilter.union(filter)

	Performs a set OR with another comparable filter. You can (only) construct
comparable filters with BloomFilter.copy_template() above. In the above
example, Bloom filter pear will have both “granny_smith” and “conference”.

The computation will occur in place. That is, calling:

>>> bf.union(bf2)





is a way of adding all the elements of bf2 to bf.

NB: Calling this function will render future calls to len()
invalid.


	Parameters

	other (BloomFilter) – filter to perform the union with



	Return type

	BloomFilter










	
BloomFilter.intersection(other)

	The same as BloomFilter.union() above except it uses
a set AND instead of a set OR.

NB: Calling this function will render future calls to len()
invalid.


	Parameters

	other (BloomFilter) – filter to perform the intersection with



	Return type

	BloomFilter










	
BloomFilter.close()

	Closes the currently opened BloomFilter file descriptor.
Following accesses to this instance will raise a ValueError.

Caution: this will delete an in-memory filter irrecoverably!







Magic Methods


	
BloomFilter.__len__(item)

	Returns the number of distinct elements that have been
added to the BloomFilter object, subject to the error
given in BloomFilter.error_rate.

Example:

>>> bf = BloomFilter(100, 0.1, '/tmp/fruit.bloom')
>>> bf.add('apple')
>>> bf.add('apple')
>>> bf.add('orange')
>>> len(bf)
2





Raises IndeterminateCountError if a the Bloom filter
was a result of a set operation. Example:

>>> bf2 = bf.copy_template('/tmp/new.bloom')
>>> bf2 |= bf
>>> len(bf2)
Traceback (most recent call last):
    ...
pybloomfilter.IndeterminateCountError: Length of BloomFilter object is unavailable after intersection or union called.






	Parameters

	item – hashable object



	Return type

	int










	
BloomFilter.__contains__(item)

	Checks to see if item is contained in the filter, with
an acceptable false positive rate of BloomFilter.error_rate (see above).


	Parameters

	item – hashable object



	Return type

	bool










	
BloomFilter.__ior__(filter)

	See BloomFilter.union().






	
BloomFilter.__iand__(filter)

	See BloomFilter.intersection().







Exceptions


	
class pybloomfilter.IndeterminateCountError(message)

	The exception that is raised if len() is called on a BloomFilter
object after |=, &=, BloomFilter.intersection(), or BloomFilter.union() is used.









          

      

      

    

  

    
      
          
            
  
License

MIT License


Copyright (c) 2010 - 2023 Michael Axiak, Prashant Sinha, Vytautas Mizgiris and others.

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.







          

      

      

    

  

    
      
          
            
  
Authors


Current maintainers


	Prashant Sinha (@prashnts [https://github.com/prashnts])


	Vytautas Mizgiris (@vmizg [https://github.com/vmizg])






Original author


	Michael Axiak (@axiak [https://github.com/axiak])






Contributors


	Rob Stacey


	dlecocq: for superfast addition


	pbutler: fix memory leak


	Dan Crosta: convert MurmurHash3 to C from C++


	gaetano-guerriero: fixed base64 dumps


	gonzalezzfelipe: fixed buggy “copy_template” method


	xyb: added bit_count and approximation of set elements.








          

      

      

    

  

    
      
          
            
  
Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].


0.5.7 [https://github.com/prashnts/pybloomfiltermmap3/releases/tag/0.5.7] (2023-02-16)


Fixes


	Ensure installation in Python 3.10+ doesn’t fail.







0.5.5 [https://github.com/prashnts/pybloomfiltermmap3/releases/tag/0.5.5] (2021-10-28)


Fixes


	Bad upload to PyPI (which is yanked). Everything else is the same as 0.5.4.







0.5.4 [https://github.com/prashnts/pybloomfiltermmap3/releases/tag/0.5.4] (2021-10-28)


Fixes


	Add a special case for bytes objects in the filter. Fixes the serialization issues when loading the filter.






Added


	Added BitCount to get approximate count of elements in the set. (@xyb)


	Added BloomFilter.approx_len() and BloomFilter.bit_count() properties.






Changes


	Calling len(bloomfilter) now reports approximate element count if any set union or intersection was performed.







0.5.3 [https://github.com/prashnts/pybloomfiltermmap3/releases/tag/0.5.3] (2020-08-22)


Fixes


	Fixed a long standing issue where Bloom filter length would not get reset after calling clear_all()


	Added C99 compatibility for MurmurHash3.c as pybloomfilter would fail on some systems such as Alpine






Changes


	Release tooling (uploads tagged releases to pypi).







0.5.2 [https://github.com/prashnts/pybloomfiltermmap3/releases/tag/0.5.2] (2020-01-13)


Changes


	Python setup will now always try to use and build from Cython, if the module is available in the current environment.
To force cythonize, use “–cython”. If the module is not available and no “–cython” was used, the setup
will look for a bundled Cython source.







0.5.1 [https://github.com/prashnts/pybloomfiltermmap3/releases/tag/0.5.1] (2019-12-31)


Changes


	Add BloomFilter.bit_array() property for bit vector representation


	Add BloomFilter.filename() property and issue a PendingDeprecationWarning when using BloomFilter.name()


	Do memset after initializing BloomFilter instance to set alignment bytes to 0 prior to populating the filter (see notes in #24)


	Remove mode parameter from BloomFilter.from_base64() method introduced in 0.5.0 as part of a refactoring (see notes in #23)


	Add explicit flag to build using Cython when building or installing a package; setup looks for a bundled Cython
source by default (included in the PyPI distribution package)







0.5.0 [https://github.com/prashnts/pybloomfiltermmap3/releases/tag/0.5.0] (2019-11-25)


Changes


	Add support for read-only Bloom filter files


	Add customization of hash seeds for hashing algorithms


	Drop Python < 3.5 support







0.4.19 [https://pypi.org/project/pybloomfiltermmap3/0.4.19] (2019-10-11)


Changes


	Ensure that filename is encoded in copy_template() (thanks @gonzalezzfelipe [https://github.com/gonzalezzfelipe]!)







0.4.18 [https://pypi.org/project/pybloomfiltermmap3/0.4.18] (2019-10-08)


Fixes


	Fix missing Cython dependency in setup.py







0.4.17 [https://pypi.org/project/pybloomfiltermmap3/0.4.17] (2019-08-25)


Fixes


	PyPi wants long_description and its type







0.4.16 [https://pypi.org/project/pybloomfiltermmap3/0.4.16] (2019-08-25)


Fixes


	Fix read / write of base64 encoded filter files (thanks @gaetano-guerriero [https://github.com/gaetano-guerriero]!)







0.4.15 [https://pypi.org/project/pybloomfiltermmap3/0.4.15] (2019-04-09)


Changes


	Remove Python 2 support, add Python 3 support







Previous Versions

See Python 2 pybloomfiltermmap CHANGELOG [https://github.com/axiak/pybloomfiltermmap/blob/master/CHANGELOG].





          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	
       	
       pybloomfilter (Unix, Windows)	
       a fast implementation of Bloom filter for Python

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | F
 | I
 | O
 | P
 | S
 | T
 | U
 


_


  	
      	__contains__() (pybloomfilter.BloomFilter method)


      	__iand__() (pybloomfilter.BloomFilter method)


  

  	
      	__ior__() (pybloomfilter.BloomFilter method)


      	__len__() (pybloomfilter.BloomFilter method)


  





A


  	
      	add() (pybloomfilter.BloomFilter method)


  





B


  	
      	BloomFilter (class in pybloomfilter)


  





C


  	
      	clear_all() (pybloomfilter.Bloomilter method)


      	close() (pybloomfilter.BloomFilter method)


  

  	
      	copy() (pybloomfilter.BloomFilter method)


      	copy_template() (pybloomfilter.BloomFilter method)


  





F


  	
      	from_base64() (pybloomfilter.BloomFilter class method)


  





I


  	
      	IndeterminateCountError (class in pybloomfilter)


  

  	
      	intersection() (pybloomfilter.BloomFilter method)


  





O


  	
      	open() (pybloomfilter.BloomFilter class method)


  





P


  	
      	pybloomfilter (module)


  





S


  	
      	sync() (pybloomfilter.BloomFilter method)


  





T


  	
      	to_base64() (pybloomfilter.BloomFilter method)


  





U


  	
      	union() (pybloomfilter.BloomFilter method)


  

  	
      	update() (pybloomfilter.BloomFilter method)


  







          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          pybloomfiltermmap3: a fast implementation of Bloom filter for Python
        


        		
          BloomFilter Class Reference
          
            		
              Class Methods
            


            		
              Instance Attributes
            


            		
              Instance Methods
            


            		
              Magic Methods
            


            		
              Exceptions
            


          


        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





